skip to main content


Search for: All records

Creators/Authors contains: "McKinnon, Kevin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Data-driven models of stellar spectra are useful tools to study nonstellar information, such as the diffuse interstellar bands (DIBs) caused by intervening interstellar material. Using ∼55,000 spectra of ∼17,000 red clump stars from the APOGEE DR16 data set, we create second-order polynomial models of the continuum-normalized flux as a function of stellar parameters (Teff,logg, [Fe/H], [α/Fe], and age). The model and data show good agreement within uncertainties across the APOGEE wavelength range, although many regions reveal residuals that are not in the stellar rest-frame. We show that many of these residual features—having average extrema at the level of ∼3% in stellar flux on average—can be attributed to incompletely removed spectral lines from the Earth’s atmosphere and DIBs from the interstellar medium (ISM). After removing most of the remaining contamination from Earth’s sky, we identify 84 absorption features not seen in unreddened sightlights that have <50% probability of being noise artifacts—with 25 of these features having <5% probability of being noise artifacts—including all 10 previously known DIBs in the APOGEE wavelength range. Because many of these features occur in the wavelength windows that APOGEE uses to measure chemical abundances, note that characterization and removal of this nonstellar contamination establish an important step in reaching the precision required for chemical tagging experiments. Proper characterization of these features will benefit Galactic ISM science and the currently ongoing Milky Way Mapper program of Sloan Digital Sky Survey V, which relies on the APOGEE spectrograph.

     
    more » « less
  2. Abstract

    The Halo Assembly in Lambda Cold Dark Matter: Observations in 7 Dimensions (HALO7D) survey measures the kinematics and chemical properties of stars in the Milky Way (MW) stellar halo to learn about the formation of our Galaxy. HALO7D consists of Keck II/DEIMOS spectroscopy and Hubble Space Telescope–measured proper motions of MW halo main-sequence turnoff stars in the four Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey fields. HALO7D consists of deep pencil beams, making it complementary to other contemporary wide-field surveys. We present the [Fe/H] and [α/Fe] abundances for 113 HALO7D stars in the Galactocentric radial range of ∼10–40 kpc along four separate pointings. Using the full 7D chemodynamical data (3D positions, 3D velocities, and abundances) of HALO7D, we measure the velocity anisotropy,β, of the halo velocity ellipsoid for each field and for different metallicity-binned subsamples. We find that two of the four fields have stars on very radial orbits, while the remaining two have stars on more isotropic orbits. Separating the stars into high-, mid-, and low-[Fe/H] bins at −2.2 and −1.1 dex for each field separately, we find differences in the anisotropies between the fields and between the bins; some fields appear dominated by radial orbits in all bins, while other fields show variation between the [Fe/H] bins. These chemodynamical differences are evidence that the HALO7D fields have different fractional contributions from the progenitors that built up the MW stellar halo. Our results highlight the additional information available on smaller spatial scales compared to results from a spherical average of the stellar halo.

     
    more » « less
  3. ABSTRACT Type Iax supernovae (SNe Iax) are the most common class of peculiar SNe. While they are thought to be thermonuclear white-dwarf (WD) SNe, SNe Iax are observationally similar to, but distinct from SNe Ia. Unlike SNe Ia, where roughly 30 per cent occur in early-type galaxies, only one SN Iax has been discovered in an early-type galaxy, suggesting a relatively short delay time and a distinct progenitor system. Furthermore, one SN Iax progenitor system has been detected in pre-explosion images with its properties consistent with either of two models: a short-lived (<100 Myr) progenitor system consisting of a WD primary and a He-star companion, or a singular Wolf–Rayet progenitor star. Using deep Hubble Space Telescope images of nine nearby SN Iax host galaxies, we measure the properties of stars within 200 pc of the SN position. The ages of local stars, some of which formed with the SN progenitor system, can constrain the time between star formation and SN, known as the delay time. We compare the local stellar properties to synthetic photometry of single-stellar populations, fitting to a range of possible delay times for each SN. With this sample, we uniquely constrain the delay-time distribution for SNe Iax, with a median and 1σ confidence interval delay time of $63_{- 15}^{+ 58} \times 10^{6}$ yr. The measured delay-time distribution provides an excellent constraint on the progenitor system for the class, indicating a preference for a WD progenitor system over a Wolf–Rayet progenitor star. 
    more » « less